
Comparative Analysis of Sentiment Classification 

using LSTM and BERT Model 
 

 

 

MS Student 

Department of Computing, 

Islamabad, Pakistan 

 

HoD Research, PhD 

Department of Computing, 

Islamabad, Pakistan 

 

 

Abstract – The aim of the paper is to compare the LSTM 

and BERT Model for the NLP task called Sentiment 

Classification. The RNNs model suffer from vanishing 

and exploding gradients and are unable to capture long-

term dependencies. This can sometimes lead to false 

classification of text. To overcome this issue of RNNs, the 

transformer models were introduced which uses the 

attention mechanism to learn the context of the sentence 

over a larger window of dependency. The paper provides 

an overview of various deep learning techniques like 

Sentiment Analysis. BERT (Bidirectional Encoder 

Representations from Transformers) is a kind of 

transformer architecture. It can capture the context both 

from past and future word sequences. It uses a heuristic 

approach to train the model and learn the whole context 

of the dataset and generate results based on that learning. 

Our paper contains 2 variations of BERT model in 

contrast with the LSTM model. The BERT models 

outperformed the LSTM model with an accuracy increase 

of around 5-6%.  

Keywords – Sentiment Analysis, BERT, Transformer, LSTMs, 

RNNs, Long-term dependencies, Attention mechanism, IMDB 

dataset. 

 

I. INTRODUCTION 

Natural Language Processing is one the hot topics of data 

science domain. Sentiment classification is an important task 

of NLP. The method of evaluating whether any sequence of 

text is positive, negative, or neutral is Sentiment 

Classification. A text sentiment analysis system incorporates 

the machine learning techniques to classify the persons, 

subjects, themes and categories within a sentence or phrase to 

weighted sentiment scores. Sentiment analysis helps large 

business data analysts gauge the public sentiment, analyze the  

complex market, trace out the credibility of brands and goods, 

and analyze the consumer experiences. Sentiment Analysis 

can be used to extract useful information about any domain.  

Using various approaches, this classification task can be 

carried out to achieve a different degree of accuracy. A 

comparative study of different sentimental analysis 

techniques with their output evaluation will be discussed in 

this paper. Current techniques used for Sentiment Analysis 

include variations of RNNs like LSTMs and GRUs. These 

RNNs are difficult to train and suffer from 

exploding/vanishing gradients problem. These gradient 

values either become this small that learning stops, or the 

gradient values grow exponentially that the maximum limit is 

exceeded by the weights, in both scenarios learning becomes 

difficult. Introducing a gating mechanism in the RNN is an 

efficient solution to this issue. The GRU manages the flow of 

information, but without needing to use a memory unit, like 

the LSTM unit. Accuracy on sentiment analysis can be 

increased by using deep learning techniques which can 

overcome the long-term dependency issue of RNNs. So we 

need a mechanism which can capture long-term dependencies 

even at paragraph level. For this, we need to introduce an 

Attention mechanism in our model. One such model is 

Transformer model. 

Transformer model is used to overcome the long-term 

dependency issue of RNNs. It is a pre-trained and a 

bidirectional model which means it can remember text 

sequences from future to past, past to future or both 

combined. This pre-trained model can be easily tuned to 

perform tasks like Text Summarization, Sentiment Analysis, 

etc. as it includes the heuristic approach to train the model 

and learn the whole context of the dataset and generate results 

based on that learning. Models like transformers, LSTMs, 

GRU's and neural networks can be used to give promise 

results in the task of sentiment analysis which may lead to the 

state-of-the-art results. A comparative evaluation of LSTM 

model and a Transformer model using IMDB’s movie review 

dataset will be discussed in this paper. 

II. LITERATURE REVIEW 



In [1], I. Kaibi, E. H. Nfaoui, and H. Satori used the binary 

classification approach for the task of sentiment analysis. The 

researchers have focused on the three most popular word 

embeddings techniques for sentiment analysis, which 

includes the Fasttext, Glove, and Word2vec, on the Twitter 

dataset. The algorithms understudy are NuSVC, LinearSVC, 

Logistic Regression, Random Forest, GaussainNB, and SGD. 

The better results in terms of accuracy is of Fasttext model 

with 84.89% accuracy value, NuSVC classifier with 84.29% 

accuracy value, and the average of tweet word vectors with 

83.85% accuracy value. 

The classical bag-of-words model have few deficiencies (like 

due to the large scale of vocabulary, bag of words contributes 

to a high dimensional function vector) and affects the 

accuracy of sentiment classifications. In this paper [2], the 

researchers improved the accuracy of the classification of 

sentiment by using the technique of Word Embeddings. The 

Skip-Gram Model is used whereas the underlying approach is 

the Word2Vec to create high-dimensional word vectors that 

learn words from contextual information. To evaluate the 

polarities of the tweets random forest classifier was used. An 

overall accuracy of 81% indicates that the classifier did well 

to predict the polarities of sentiment due to the consistency of 

word vectors generated by the model of the skip-gram.  

In paper [3], Rincy J. and Varghese S.C. adopted a lexicon-

based sentiment analysis approach that exploits sense 

meanings. This paper uses SentiWordNet and WordNet 

lexical tools alongside Word Sense Disambiguation. 

Sentiment classification is performed using WordNet and 

SentiWordNet on Twitter info. This technique gave an 

accuracy of 78.6%. 

R. Jose and V. S. Chooralil, in their paper [4], the researchers 

have combined the outcomes of a series of classifiers in order 

to decrease the chance of selecting an incorrect classifier. The 

overall approach was to perform sentiment classification 

using Hidden-Markov Model, Naive Bayes, and SentiWord-

Net, and lastly classification using an ensemble approach. 

Using the ensemble gave an accuracy of 71.48%. 

In this paper [5], Das, Bijoyan & Chakraborty, Sarit proposed 

a method for classifying text sentiment using the Next Word 

Negation along with the Term Frequency-Inverse Document 

Frequency. The researchers have also compared the 

performance of the TF-IDF, and BOW model with the 'next 

word negation' text classification model. The model was 

trained for 3 most popular classification algorithms; 

Multinomial Naïve Bayes, Linear SVM, and Max Entropy 

Random Forest. The accuracy of all the algorithms is Linear 

SVM was highest among all.  

In paper [6], the researchers have applied a Machine Learning 

Tool to evaluate the polarity of Twitter messages. This 

research used the Recursive Neural Tensor Network to 

(RNTN) to arrange all terms using a binary tree. The trained 

RNTN model was applied to classify the dataset. The 

researchers used the original RNTN model to create a 

baseline, which had not been trained by their manually 

annotated data. 

In [7], the various techniques used for sentiment analysis are 

lexicon-based approach, machine learning based approaches, 

word embeddings, CNNs, RNNs, and LSTMs. The RNN 

model gave an overall efficiency of 87.53%. The recurrent 

model of the neural network generates output on the basis of 

using sequential knowledge in previous computations. This 

can an efficient approach for any sentiment classification 

problem, but there is still an issue of long-term dependencies. 

In paper [8], B. N. Saha, A. Senapati and A. Mahajan used a 

modified version of RNN known as LSTM for sentiment 

analysis of election data. This approach is then compared to 

the supervised classifiers including naive bayes, and SVM. 

For classification task, the optimizer named ADAM was 

used. Results have shown that the deep RNN architecture 

based on LSTM outperforms all other classifiers discussed.  

RNNs are difficult to train and suffer from vanishing and 

exploding gradients problem. The deep learning models like 

transformers, LSTMs, GRU's and neural networks can be 

used to give promise results in the task of sentiment analysis 

which may lead to the state-of-the-art results. 

 

III. METHODOLOGY 

Our paper contains a comparative evaluation of LSTM model 

and a BERT model with 2 variations having different number 

of attention heads, hidden layers, and hidden size. 

 

A. The LSTM architecture 

To avoid the long-term dependence problem, LSTMs were 

introduced. The main goal is to  recall knowledge for long 

periods of time. The LSTMs were designed to capture the 

data of the sequential / time series.   

LSTMs architecture have a chain like structure with a 

repeating module. There are 4 neural network layers, each 

interacting with one another in a meaningful fashion. The 

main component in LSTM architecture is the cell state, which 

is the horizontal belt running across the top of the cell (shown 

in figure 1). This cell state is a conveyor belt. It connects the 

entire module chain with just some small linear interactions 

with other components of the cell. The information can flow 

unchanged very easily along this belt.  



The discussed LSTM architecture has the capacity to store or 

forget the information to the cell state, each controlled via 

structures known as gates. These gates allows the data to 

move through, forgetting the redundant information and 

preserving the important information. They are composed of 

a layer of sigmoid function and a multiplication operation 

pointwise. 

In this variation of RNN, we multiply the weight attached 

with the previous state's input and the weight attached with 

the previous state's output. And then, to get the new state, we 

pass them to the Tanh function (also called the squashing 

function, used to evaluate candidate values to be added to the 

internal state of LSTM cell unit). In order to obtain the output 

vector, we  multiply the new state with the output of the Tanh 

function. 

 

Figure 1. Single LSTM cell unit 

 

B. The BERT architecture  

The BERT model was introduced to pre-train deep 

bidirectional representations from the unlabeled text by 

conditioning all layers together on both the left (past) and 

right (future) context. As a result, with an additional output 

layer (as per problem statement), the pre-trained BERT model 

can be fine-tuned for a wide variety of tasks including 

Sentiment Analysis.  

The BERT model simultaneously considers every word of the 

input sentence and develops a contextual meaning of these 

words using an Attention mechanism (allows to remember 

text sequences and features of the input in our model hence 

capturing the long-term dependencies without any window 

size limitation). This attention mechanism was first 

introduced in the paper 10 ‘Attention is all you need’. In deep 

learning, the attention mechanism is based on this notion of 

focusing the on specific words in the context, so that when 

processing the data, the model pays greater attention to 

certain word sequences.  

The BERT model architecture is an encoder-decoder 

structure (as shown in figure 2) for multi-layer bidirectional 

transformers.  

 

Figure 2. BERT model architecture 

 

The encoder part consists of a stack of identical layers. There 

are two sub layers in each layer. The first layer is a 

mechanism of multi-head self-attention, and the second is a 

fully connected feed-forward network that is position wise. 

There is a residual connection followed by layer 

normalization around each of the two sub layers.  

The attention mechanism used by the transformer takes 3 

input matrixes that are  Query (Q), Key (K), Value (V). 

Attention scores are evaluated by dot product of the hidden 

states if encoder and decoder. The attention of the dot-product 

is scaled by a factor of square root of depth. The 

multiplication of the attention weights with V vector helps 

concentrate on words that are to be focused and the words that 

are meaningless are washed out. The transformer model 

follows as mechanism as sequence to sequence with attention 

model. For each word/token in the sequence, the input 

sentence is passed through N encoder layers that produce an 

output. 

For sentiment analysis, only this encoder is used. Since the 

encoder portion of the transformer is used for a model that 

reads input sentence and produces some features that can be 

used for different NLP tasks. 
 

IV. DATASET 

The IMDB's movie review dataset compiled and prepared by 

Andrew L. Maas from the popular film rating service, 

IMDB.  The  IMDB reviews dataset uses a binary sentiment 

classification as per text polarity (whether it positive or 

negative). It includes 25,000 training movie reviews and 

25,000 for testing. All of these 50,000 reviews are labelled 

data that can be used for deep learning techniques. 

 

V.  EXPERIMENTAL SETUP 



The hyperparameters of the model, layers. and the workflow 

of both the LSTM and BERT will be discussed in this section. 

 

A. The LSTM architecture  

Firstly, the data is preprocessed (removing stop words, URLs, 

and special characters) and fed into the network. The first 

layer is the embedding layer. The embedding layer helps us 

to translate each word into a fixed size vector of a fixed 

length. It is dense vector containing real numbers.   This 

embedding layer functions like a lookup table. In this table, 

the terms are the keys, while the dense word vectors are the 

values. The input embedding size used is 20000 (same as the 

number of maximum features to be used for training) and the 

output embedding size equal to 128. Next comes the LSTM 

layer, which generates a series output (means it capture the 

dependencies) rather than a single value output. For all input 

time steps one output per input time step, rather than one 

output time step. The output dimension of this layer is 128, 

with a dropout rate (to drop out linear transformation of the 

inputs) equal to 0.2 and a recurrent rate (prevents the over 

fitting of the data) equal to 0.2. The last layer of the model is 

the dense layer (containing the neurons), with an output 

dimensionality of 1 and a Sigmoid activation function. This 

dense layer performs a matrix-vector multiplication for 

output generation. These values are trainable parameters 

which are updated during backpropagation using the loss 

function to find the optimized weights for our network. 

The optimizer used for classification is ‘Adam’ and the loss 

function used is ‘binary crossentropy’. The evaluation metric 

used is the Accuracy metric. Other specifications include:  

 

Table 1. Hyperparameters of LSTM model 

Max_features 20000 

Maximum length for the input 80 

Batch size 32 

Number of epochs for training dataset 07 

 

A high-level design of the LSTM model used is given below: 

 

Figure 3. LSTM high-level workflow 

 

B. The BERT architecture  

After importing the dataset from the Internet movie database, 

the preprocessing of the dataset is done. The imported data is 

already divided into training and test split. We then add  80:20 

split on training data to obtain the validation set. The random 

seed value is passed to this split in order to ensure that there 

is no overlap in the training and validation split.  

Before being inserted into BERT, text input must be 

converted into numeric token ids. BERT takes token 

embeddings, segment embeddings, positional embeddings, 

and mask tokens as input. In the input sentence, the token 

embeddings are numerical representations of words. There is 

also something called tokenization of sub-words that BERT 

uses to break down larger or complicated words into simple 

words first and then turn them into tokens. The segment 

embeddings are used in a single input to help BERT 

distinguish between the various sentences. For words from 

the same sentence, the components of this embedding vector 

are all the same and the meaning changes if the sentence is 

different. The mask tokens allow BERT to understand what 

is important to all input words and which ones are there only 

for padding. Finally, there are position embeddings in BERT 

that are generated internally and provide a sense of order for 

the input data. These values are fed into the feed forward 

network containing the dense layer and a dropout layer. A 

look ahead mask is used for ignoring the words that should 

not be considered for prediction.  

 

Figure 4.  BERT high-level workflow 

There are multiple BERT models that can be used, they differ 

from each other in terms of number of attention heads, hidden 

size (output of each layer), and hidden layers. All these 

models are pre-trained on the BooksCorpus and Wikipedia.  

Our model contains the BERT encoder, a single dense layer, 

and a dropout layer.  



 

Figure 5. Layers used in BERT model 

 

The BERT models uses three important keys: pooled output 

(to represent each input sequence as a whole), sequence 

output (represents each input token in the context) and 

encoder outputs (are the intermediate activations of the 

transformer blocks). The dropout rate used at the dropout 

layer is 0.4 to avoid overfitting of data.  

A classifier is then applied to predict the sentiments of the 

text using the learned context of the input sentences. Other 

important details are as follows: 

 

Table 2. Hyperparameters of BERT model 

Maximum length for the input 128 

Batch size 32 

Number of epochs for training dataset 07 

 

The Adamw optimizer basically does regularization by 

weight decay and reduces prediction loss. The learning rate is 

initialized with a value of 3e-5. Since, sentiment analysis is a 

binary classification problem, the loss function used is the 

binary crossentropy. The output layer generates a single value 

which can be termed as a positive sentiment or a negative 

sentiment. The evaluation metric used is the Accuracy metric 

using the Binary Accuracy function. 

For this paper, two BERT models were trained to compare the 

results of both model in terms of effect of number of attention 

heads, hidden size, and hidden layers on the accuracy value. 

 

Table 3. Details of BERT models 

Model 1 (small_bert/bert_en_uncased_L-4_H-512_A-8) 

Attention heads_A 8 

Hidden layers_L 4 

Hidden size_H 512 

Model 2 (small_bert/bert_en_uncased_L-4_H-768_A-12) 

Attention heads_A 12 

Hidden layers_L 4 

Hidden size_H 768 

 

The results of the models in comparison with the LSTM 

model will be discussed in the discussion section of the paper. 

 
 

VI. DISCUSSION AND RESULTS 

The training process of all three model uses the Adamw 

optimizer and binary cross entropy to train the weights. This 

process reduces the loss value hence attaining training 

weights for the model. We set accuracy as the metric for 

measuring model's performance. 

A. Discussion of LSTM results 

The LSTM model was used to predict the labels for the test 

set and gave an accuracy of 81.42%. Following is the table 

of accuracy values of this model. 

Table 4. Results of LSTM model 

Validation accuracy 81.33% 

Test accuracy 81.42% 

Loss value 0.76 
 

The graphs for model accuracy and loss value is given below: 

 
Figure 6. Accuracy curve of LSTM model 

 

Figure 7. Loss value curve of LSTM model 
 

B. Discussion of BERT Model 1 results 

The BERT model having 8 attention heads, 512 hidden size 

and 4 hidden layers gave a test accuracy of 85.23%. 

Table 5. Results of BERT model 1 

Validation accuracy 84.88% 



Test accuracy 85.23% 

Loss value 0.614 
 

The graphs for model accuracy and loss value is given below. 

 

Figure 8. Accuracy and loss value curve of BERT model 1 

 

C. Discussion of BERT Model 2  results 

The BERT model having 12 attention heads, 768 hidden size 

and 4 hidden layers gave a test accuracy of 86.35%. 

 

Table 6. Results of BERT model 2 

Validation accuracy 85.98 

Test accuracy 86.35% 

Loss value 0.73 
 

The graphs for model accuracy and loss value is given below. 

 

Figure 9. Accuracy and loss value curve of BERT model 2 

 

LSTM models are capable of learning order dependence in 

sequence prediction problems but still its window size for 

learning these dependencies is limited. It cannot learn the 

context of sentences at a paragraph level. The BERT 

(transformer model) overcomes this issue of long-term 

dependencies using the attention mechanism. The greater the 

number of attention heads used, the better would be the 

performance of the model. As clearly seen from our 

experiment results mentioned in the previous section, the 

model with attention_heads = 8 gave an accuracy of  85.23%, 

whereas the model with attention_heads = 12 gave an 

accuracy of 86.35%. Increased number of heads leads to 

parallelization, this means multiple attention heads allows for 

attending to parts of the sequence differently. As each word 

(each position in the input sequence) is processed by the 

model, attention enables it to search for clues at other 

positions in the input sequence that can help lead to better 

encoding for this word. 

Transformers are better than LSTMs due to the presence 

of self-attention, multi-head attention mechanisms and 

positional embeddings in their architecture. They prevent 

recursion completely by processing sentences as a whole and 

by learning relationships between each input sentence. 

 

VII. CONCLUSION 

From the results of our experiment, it is evident that the 

BERT, a transformer model, outperformed the LSTM model. 

As transformer models are attention-based models, unlike 

LSTMs where the sentence is sequentially processed - one 

word per time stage, transformers see the entire sentence as a 

whole. LSTMs need to propagate the error back in time by 

one word at a time during training. On the contrary, the 

transformer sees all words/sentences simultaneously - 

so there is no backpropagation across time. The main benefit 

of transformer model is that they are not sequential, which 

means that they can be more easily parallelized, unlike 

LSTMs, and that by parallelizing the training, larger and 

larger models can be trained. Hence, transformer models can  

be used for various other text classification tasks for better 

accuracies.  

 

REFERENCES 

[1] Ibrahim K. , El Habib N., and Hassan S., "A Comparative 

Evaluation of Word Embeddings Techniques for Twitter 

Sentiment Analysis", (2019), International Conference on 

Wireless Technologies, Embedded and Intelligent Systems 

(WITS.). 

[2] Oscar B.Deho , William A. A, Jeferry A.A , Felix L.A 

,"Sentiment Analysis with Word Embedding", (2019). 

[3] Rincy Jose, Varghese S.C. ,"Predication of Election Result 

by Enhanced Sentiment Analysis on Twitter Data using 

Word Sense Disambiguation", (2015), International 

Conference on Control Communication & Computing India. 

[4] Rincy Jose, Varghese S.C. ,"Predication of Election Result 

by Enhanced Sentiment Analysis on Twitter Data using 

Classifier Ensemble Approach", (2016), International 

Conference on Data Mining and Advanced Computing. 

[5] Bijoyan D., Sarit Chakraborty, "An Improved Text 

Sentiment Classification Model Using TF-IDF and Next 

Word Negation", IEEE, (2018). 



[6] Meng-Hsiu T. , Yingfeng W. , Myungjae K. , Neil Rigole., 

"A Machine Learning Based Strategy for Election Result 

Predication" , Middle Georgia State University, (2019), 

International Conference on Computational Science and 

Computational Intelligence (CSCI). 

[7] Patel, Alpna and Tiwari, Arvind Kumar, Sentiment Analysis 

by using Recurrent Neural Network (February 8, 2019). 

Proceedings of 2nd International Conference on Advanced 

Computing and Software Engineering (ICACSE) 2019. 

[8] Baidya N.S, Apurbalal S. , Amnol M. ,"LSTM based Deep 

RNN Architecture for Election Sentiment Analysis From 

Bengali Newspaper", (2020), International Conference on 

Computational Performance Evaluation (ComPE). 

[9] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, 

L., Gomez, A.N., Kaiser, L., & Polosukhin, I. “Attention is 

All you Need”, (2017)  


